3.590 \(\int \sqrt{a+b \cos (c+d x)} (A+B \cos (c+d x)) \sec ^{\frac{9}{2}}(c+d x) \, dx\)

Optimal. Leaf size=473 \[ \frac{2 \left (25 a^2 A+7 a b B-4 A b^2\right ) \sin (c+d x) \sec ^{\frac{3}{2}}(c+d x) \sqrt{a+b \cos (c+d x)}}{105 a^2 d}+\frac{2 (a-b) \sqrt{a+b} \left (a^2 (25 A-63 B)+2 a b (3 A-7 B)+8 A b^2\right ) \sqrt{\cos (c+d x)} \csc (c+d x) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right )}{105 a^3 d \sqrt{\sec (c+d x)}}+\frac{2 (a-b) \sqrt{a+b} \left (19 a^2 A b+63 a^3 B-14 a b^2 B+8 A b^3\right ) \sqrt{\cos (c+d x)} \csc (c+d x) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right )}{105 a^4 d \sqrt{\sec (c+d x)}}+\frac{2 (7 a B+A b) \sin (c+d x) \sec ^{\frac{5}{2}}(c+d x) \sqrt{a+b \cos (c+d x)}}{35 a d}+\frac{2 A \sin (c+d x) \sec ^{\frac{7}{2}}(c+d x) \sqrt{a+b \cos (c+d x)}}{7 d} \]

[Out]

(2*(a - b)*Sqrt[a + b]*(19*a^2*A*b + 8*A*b^3 + 63*a^3*B - 14*a*b^2*B)*Sqrt[Cos[c + d*x]]*Csc[c + d*x]*Elliptic
E[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c +
d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(105*a^4*d*Sqrt[Sec[c + d*x]]) + (2*(a - b)*Sqrt[a + b]*
(8*A*b^2 + a^2*(25*A - 63*B) + 2*a*b*(3*A - 7*B))*Sqrt[Cos[c + d*x]]*Csc[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*
Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt
[(a*(1 + Sec[c + d*x]))/(a - b)])/(105*a^3*d*Sqrt[Sec[c + d*x]]) + (2*(25*a^2*A - 4*A*b^2 + 7*a*b*B)*Sqrt[a +
b*Cos[c + d*x]]*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(105*a^2*d) + (2*(A*b + 7*a*B)*Sqrt[a + b*Cos[c + d*x]]*Sec[c
 + d*x]^(5/2)*Sin[c + d*x])/(35*a*d) + (2*A*Sqrt[a + b*Cos[c + d*x]]*Sec[c + d*x]^(7/2)*Sin[c + d*x])/(7*d)

________________________________________________________________________________________

Rubi [A]  time = 1.43775, antiderivative size = 473, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.171, Rules used = {2961, 2999, 3055, 2998, 2816, 2994} \[ \frac{2 \left (25 a^2 A+7 a b B-4 A b^2\right ) \sin (c+d x) \sec ^{\frac{3}{2}}(c+d x) \sqrt{a+b \cos (c+d x)}}{105 a^2 d}+\frac{2 (a-b) \sqrt{a+b} \left (a^2 (25 A-63 B)+2 a b (3 A-7 B)+8 A b^2\right ) \sqrt{\cos (c+d x)} \csc (c+d x) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right )}{105 a^3 d \sqrt{\sec (c+d x)}}+\frac{2 (a-b) \sqrt{a+b} \left (19 a^2 A b+63 a^3 B-14 a b^2 B+8 A b^3\right ) \sqrt{\cos (c+d x)} \csc (c+d x) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right )}{105 a^4 d \sqrt{\sec (c+d x)}}+\frac{2 (7 a B+A b) \sin (c+d x) \sec ^{\frac{5}{2}}(c+d x) \sqrt{a+b \cos (c+d x)}}{35 a d}+\frac{2 A \sin (c+d x) \sec ^{\frac{7}{2}}(c+d x) \sqrt{a+b \cos (c+d x)}}{7 d} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*Cos[c + d*x]]*(A + B*Cos[c + d*x])*Sec[c + d*x]^(9/2),x]

[Out]

(2*(a - b)*Sqrt[a + b]*(19*a^2*A*b + 8*A*b^3 + 63*a^3*B - 14*a*b^2*B)*Sqrt[Cos[c + d*x]]*Csc[c + d*x]*Elliptic
E[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c +
d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(105*a^4*d*Sqrt[Sec[c + d*x]]) + (2*(a - b)*Sqrt[a + b]*
(8*A*b^2 + a^2*(25*A - 63*B) + 2*a*b*(3*A - 7*B))*Sqrt[Cos[c + d*x]]*Csc[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*
Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt
[(a*(1 + Sec[c + d*x]))/(a - b)])/(105*a^3*d*Sqrt[Sec[c + d*x]]) + (2*(25*a^2*A - 4*A*b^2 + 7*a*b*B)*Sqrt[a +
b*Cos[c + d*x]]*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(105*a^2*d) + (2*(A*b + 7*a*B)*Sqrt[a + b*Cos[c + d*x]]*Sec[c
 + d*x]^(5/2)*Sin[c + d*x])/(35*a*d) + (2*A*Sqrt[a + b*Cos[c + d*x]]*Sec[c + d*x]^(7/2)*Sin[c + d*x])/(7*d)

Rule 2961

Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[(g*Csc[e + f*x])^p*(g*Sin[e + f*x])^p, Int[((a + b*Sin[e + f*x])^m*(
c + d*Sin[e + f*x])^n)/(g*Sin[e + f*x])^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && NeQ[b*c - a*d
, 0] &&  !IntegerQ[p] &&  !(IntegerQ[m] && IntegerQ[n])

Rule 2999

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((B*a - A*b)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e
 + f*x])^n)/(f*(m + 1)*(a^2 - b^2)), x] + Dist[1/((m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c +
d*Sin[e + f*x])^(n - 1)*Simp[c*(a*A - b*B)*(m + 1) + d*n*(A*b - a*B) + (d*(a*A - b*B)*(m + 1) - c*(A*b - a*B)*
(m + 2))*Sin[e + f*x] - d*(A*b - a*B)*(m + n + 2)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}
, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && GtQ[n, 0]

Rule 3055

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 - a*b*B + a^2*C)*Cos[e +
 f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2)), x] + Dis
t[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*(b
*c - a*d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - a*b*B + a^2*C) + (m + 1)*(b*
c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && Lt
Q[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&
  !IntegerQ[m]) || EqQ[a, 0])))

Rule 2998

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*s
in[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A - B)/(a - b), Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e
+ f*x]]), x], x] - Dist[(A*b - a*B)/(a - b), Int[(1 + Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin
[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && NeQ[A, B]

Rule 2816

Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[(-2*
Tan[e + f*x]*Rt[(a + b)/d, 2]*Sqrt[(a*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[(a*(1 + Csc[e + f*x]))/(a - b)]*Ellipt
icF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/(Sqrt[d*Sin[e + f*x]]*Rt[(a + b)/d, 2])], -((a + b)/(a - b))])/(a*f), x] /
; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && PosQ[(a + b)/d]

Rule 2994

Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]]), x_Symbol] :> Simp[(-2*A*(c - d)*Tan[e + f*x]*Rt[(c + d)/b, 2]*Sqrt[(c*(1 + Csc[e + f*x]))/(c
- d)]*Sqrt[(c*(1 - Csc[e + f*x]))/(c + d)]*EllipticE[ArcSin[Sqrt[c + d*Sin[e + f*x]]/(Sqrt[b*Sin[e + f*x]]*Rt[
(c + d)/b, 2])], -((c + d)/(c - d))])/(f*b*c^2), x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] &&
 EqQ[A, B] && PosQ[(c + d)/b]

Rubi steps

\begin{align*} \int \sqrt{a+b \cos (c+d x)} (A+B \cos (c+d x)) \sec ^{\frac{9}{2}}(c+d x) \, dx &=\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{a+b \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac{9}{2}}(c+d x)} \, dx\\ &=\frac{2 A \sqrt{a+b \cos (c+d x)} \sec ^{\frac{7}{2}}(c+d x) \sin (c+d x)}{7 d}+\frac{1}{7} \left (2 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\frac{1}{2} (A b+7 a B)+\frac{1}{2} (5 a A+7 b B) \cos (c+d x)+2 A b \cos ^2(c+d x)}{\cos ^{\frac{7}{2}}(c+d x) \sqrt{a+b \cos (c+d x)}} \, dx\\ &=\frac{2 (A b+7 a B) \sqrt{a+b \cos (c+d x)} \sec ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{35 a d}+\frac{2 A \sqrt{a+b \cos (c+d x)} \sec ^{\frac{7}{2}}(c+d x) \sin (c+d x)}{7 d}+\frac{\left (4 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\frac{1}{4} \left (25 a^2 A-4 A b^2+7 a b B\right )+\frac{1}{4} a (23 A b+21 a B) \cos (c+d x)+\frac{1}{2} b (A b+7 a B) \cos ^2(c+d x)}{\cos ^{\frac{5}{2}}(c+d x) \sqrt{a+b \cos (c+d x)}} \, dx}{35 a}\\ &=\frac{2 \left (25 a^2 A-4 A b^2+7 a b B\right ) \sqrt{a+b \cos (c+d x)} \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{105 a^2 d}+\frac{2 (A b+7 a B) \sqrt{a+b \cos (c+d x)} \sec ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{35 a d}+\frac{2 A \sqrt{a+b \cos (c+d x)} \sec ^{\frac{7}{2}}(c+d x) \sin (c+d x)}{7 d}+\frac{\left (8 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\frac{1}{8} \left (19 a^2 A b+8 A b^3+63 a^3 B-14 a b^2 B\right )+\frac{1}{8} a \left (25 a^2 A+2 A b^2+49 a b B\right ) \cos (c+d x)}{\cos ^{\frac{3}{2}}(c+d x) \sqrt{a+b \cos (c+d x)}} \, dx}{105 a^2}\\ &=\frac{2 \left (25 a^2 A-4 A b^2+7 a b B\right ) \sqrt{a+b \cos (c+d x)} \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{105 a^2 d}+\frac{2 (A b+7 a B) \sqrt{a+b \cos (c+d x)} \sec ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{35 a d}+\frac{2 A \sqrt{a+b \cos (c+d x)} \sec ^{\frac{7}{2}}(c+d x) \sin (c+d x)}{7 d}+\frac{\left ((a-b) \left (8 A b^2+a^2 (25 A-63 B)+2 a b (3 A-7 B)\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)} \sqrt{a+b \cos (c+d x)}} \, dx}{105 a^2}-\frac{\left (\left (-19 a^2 A b-8 A b^3-63 a^3 B+14 a b^2 B\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1+\cos (c+d x)}{\cos ^{\frac{3}{2}}(c+d x) \sqrt{a+b \cos (c+d x)}} \, dx}{105 a^2}\\ &=\frac{2 (a-b) \sqrt{a+b} \left (19 a^2 A b+8 A b^3+63 a^3 B-14 a b^2 B\right ) \sqrt{\cos (c+d x)} \csc (c+d x) E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right ) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (1+\sec (c+d x))}{a-b}}}{105 a^4 d \sqrt{\sec (c+d x)}}+\frac{2 (a-b) \sqrt{a+b} \left (8 A b^2+a^2 (25 A-63 B)+2 a b (3 A-7 B)\right ) \sqrt{\cos (c+d x)} \csc (c+d x) F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right ) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (1+\sec (c+d x))}{a-b}}}{105 a^3 d \sqrt{\sec (c+d x)}}+\frac{2 \left (25 a^2 A-4 A b^2+7 a b B\right ) \sqrt{a+b \cos (c+d x)} \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{105 a^2 d}+\frac{2 (A b+7 a B) \sqrt{a+b \cos (c+d x)} \sec ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{35 a d}+\frac{2 A \sqrt{a+b \cos (c+d x)} \sec ^{\frac{7}{2}}(c+d x) \sin (c+d x)}{7 d}\\ \end{align*}

Mathematica [B]  time = 24.4085, size = 3321, normalized size = 7.02 \[ \text{Result too large to show} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Sqrt[a + b*Cos[c + d*x]]*(A + B*Cos[c + d*x])*Sec[c + d*x]^(9/2),x]

[Out]

(Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((2*(19*a^2*A*b + 8*A*b^3 + 63*a^3*B - 14*a*b^2*B)*Sin[c + d*x])/
(105*a^3) + (2*Sec[c + d*x]^2*(A*b*Sin[c + d*x] + 7*a*B*Sin[c + d*x]))/(35*a) + (2*Sec[c + d*x]*(25*a^2*A*Sin[
c + d*x] - 4*A*b^2*Sin[c + d*x] + 7*a*b*B*Sin[c + d*x]))/(105*a^2) + (2*A*Sec[c + d*x]^2*Tan[c + d*x])/7))/d +
 (2*((-19*A*b)/(105*Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]) - (8*A*b^3)/(105*a^2*Sqrt[a + b*Cos[c + d*x]]
*Sqrt[Sec[c + d*x]]) - (3*a*B)/(5*Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]) + (2*b^2*B)/(15*a*Sqrt[a + b*Co
s[c + d*x]]*Sqrt[Sec[c + d*x]]) + (5*a*A*Sqrt[Sec[c + d*x]])/(21*Sqrt[a + b*Cos[c + d*x]]) - (17*A*b^2*Sqrt[Se
c[c + d*x]])/(105*a*Sqrt[a + b*Cos[c + d*x]]) - (8*A*b^4*Sqrt[Sec[c + d*x]])/(105*a^3*Sqrt[a + b*Cos[c + d*x]]
) - (2*b*B*Sqrt[Sec[c + d*x]])/(15*Sqrt[a + b*Cos[c + d*x]]) + (2*b^3*B*Sqrt[Sec[c + d*x]])/(15*a^2*Sqrt[a + b
*Cos[c + d*x]]) - (19*A*b^2*Cos[2*(c + d*x)]*Sqrt[Sec[c + d*x]])/(105*a*Sqrt[a + b*Cos[c + d*x]]) - (8*A*b^4*C
os[2*(c + d*x)]*Sqrt[Sec[c + d*x]])/(105*a^3*Sqrt[a + b*Cos[c + d*x]]) - (3*b*B*Cos[2*(c + d*x)]*Sqrt[Sec[c +
d*x]])/(5*Sqrt[a + b*Cos[c + d*x]]) + (2*b^3*B*Cos[2*(c + d*x)]*Sqrt[Sec[c + d*x]])/(15*a^2*Sqrt[a + b*Cos[c +
 d*x]]))*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*(-2*(a + b)*(19*a^2*A*b + 8*A*b^3 + 63*a^3*B - 14*a*b^2*B)*Sqrt
[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan
[(c + d*x)/2]], (-a + b)/(a + b)] + 2*a*(a + b)*(8*A*b^2 - 2*a*b*(3*A + 7*B) + a^2*(25*A + 63*B))*Sqrt[Cos[c +
 d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*
x)/2]], (-a + b)/(a + b)] - (19*a^2*A*b + 8*A*b^3 + 63*a^3*B - 14*a*b^2*B)*Cos[c + d*x]*(a + b*Cos[c + d*x])*S
ec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/(105*a^3*d*Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[(c + d*x)/2]^2]*((b*Sqrt[Cos
[(c + d*x)/2]^2*Sec[c + d*x]]*Sin[c + d*x]*(-2*(a + b)*(19*a^2*A*b + 8*A*b^3 + 63*a^3*B - 14*a*b^2*B)*Sqrt[Cos
[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c
+ d*x)/2]], (-a + b)/(a + b)] + 2*a*(a + b)*(8*A*b^2 - 2*a*b*(3*A + 7*B) + a^2*(25*A + 63*B))*Sqrt[Cos[c + d*x
]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2
]], (-a + b)/(a + b)] - (19*a^2*A*b + 8*A*b^3 + 63*a^3*B - 14*a*b^2*B)*Cos[c + d*x]*(a + b*Cos[c + d*x])*Sec[(
c + d*x)/2]^2*Tan[(c + d*x)/2]))/(105*a^3*(a + b*Cos[c + d*x])^(3/2)*Sqrt[Sec[(c + d*x)/2]^2]) - (Sqrt[Cos[(c
+ d*x)/2]^2*Sec[c + d*x]]*Tan[(c + d*x)/2]*(-2*(a + b)*(19*a^2*A*b + 8*A*b^3 + 63*a^3*B - 14*a*b^2*B)*Sqrt[Cos
[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c
+ d*x)/2]], (-a + b)/(a + b)] + 2*a*(a + b)*(8*A*b^2 - 2*a*b*(3*A + 7*B) + a^2*(25*A + 63*B))*Sqrt[Cos[c + d*x
]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2
]], (-a + b)/(a + b)] - (19*a^2*A*b + 8*A*b^3 + 63*a^3*B - 14*a*b^2*B)*Cos[c + d*x]*(a + b*Cos[c + d*x])*Sec[(
c + d*x)/2]^2*Tan[(c + d*x)/2]))/(105*a^3*Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[(c + d*x)/2]^2]) + (2*Sqrt[Cos[(c
+ d*x)/2]^2*Sec[c + d*x]]*(-((19*a^2*A*b + 8*A*b^3 + 63*a^3*B - 14*a*b^2*B)*Cos[c + d*x]*(a + b*Cos[c + d*x])*
Sec[(c + d*x)/2]^4)/2 - ((a + b)*(19*a^2*A*b + 8*A*b^3 + 63*a^3*B - 14*a*b^2*B)*Sqrt[(a + b*Cos[c + d*x])/((a
+ b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*((Cos[c + d*x]*Sin[c + d*x])/(
1 + Cos[c + d*x])^2 - Sin[c + d*x]/(1 + Cos[c + d*x])))/Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])] + (a*(a + b)*(8*
A*b^2 - 2*a*b*(3*A + 7*B) + a^2*(25*A + 63*B))*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*Ellipti
cF[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*((Cos[c + d*x]*Sin[c + d*x])/(1 + Cos[c + d*x])^2 - Sin[c + d*x
]/(1 + Cos[c + d*x])))/Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])] - ((a + b)*(19*a^2*A*b + 8*A*b^3 + 63*a^3*B - 14*
a*b^2*B)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*(-((b*Sin
[c + d*x])/((a + b)*(1 + Cos[c + d*x]))) + ((a + b*Cos[c + d*x])*Sin[c + d*x])/((a + b)*(1 + Cos[c + d*x])^2))
)/Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))] + (a*(a + b)*(8*A*b^2 - 2*a*b*(3*A + 7*B) + a^2*(25*
A + 63*B))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*(-((b*S
in[c + d*x])/((a + b)*(1 + Cos[c + d*x]))) + ((a + b*Cos[c + d*x])*Sin[c + d*x])/((a + b)*(1 + Cos[c + d*x])^2
)))/Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))] + b*(19*a^2*A*b + 8*A*b^3 + 63*a^3*B - 14*a*b^2*B)
*Cos[c + d*x]*Sec[(c + d*x)/2]^2*Sin[c + d*x]*Tan[(c + d*x)/2] + (19*a^2*A*b + 8*A*b^3 + 63*a^3*B - 14*a*b^2*B
)*(a + b*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Sin[c + d*x]*Tan[(c + d*x)/2] - (19*a^2*A*b + 8*A*b^3 + 63*a^3*B - 1
4*a*b^2*B)*Cos[c + d*x]*(a + b*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]^2 + (a*(a + b)*(8*A*b^2 - 2*a
*b*(3*A + 7*B) + a^2*(25*A + 63*B))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(
1 + Cos[c + d*x]))]*Sec[(c + d*x)/2]^2)/(Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[1 - ((-a + b)*Tan[(c + d*x)/2]^2)/(
a + b)]) - ((a + b)*(19*a^2*A*b + 8*A*b^3 + 63*a^3*B - 14*a*b^2*B)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[
(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*Sec[(c + d*x)/2]^2*Sqrt[1 - ((-a + b)*Tan[(c + d*x)/2]^2)/(
a + b)])/Sqrt[1 - Tan[(c + d*x)/2]^2]))/(105*a^3*Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[(c + d*x)/2]^2]) + ((-2*(a
+ b)*(19*a^2*A*b + 8*A*b^3 + 63*a^3*B - 14*a*b^2*B)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c +
d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] + 2*a*(a + b)*(8*A*b
^2 - 2*a*b*(3*A + 7*B) + a^2*(25*A + 63*B))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((
a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] - (19*a^2*A*b + 8*A*b^3 + 63
*a^3*B - 14*a*b^2*B)*Cos[c + d*x]*(a + b*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2])*(-(Cos[(c + d*x)/2
]*Sec[c + d*x]*Sin[(c + d*x)/2]) + Cos[(c + d*x)/2]^2*Sec[c + d*x]*Tan[c + d*x]))/(105*a^3*Sqrt[a + b*Cos[c +
d*x]]*Sqrt[Sec[(c + d*x)/2]^2]*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]])))

________________________________________________________________________________________

Maple [B]  time = 0.706, size = 3436, normalized size = 7.3 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*cos(d*x+c))*sec(d*x+c)^(9/2)*(a+b*cos(d*x+c))^(1/2),x)

[Out]

2/105/d/a^3*(-25*A*cos(d*x+c)^5*a^3*b-19*A*cos(d*x+c)^5*a^2*b^2+4*A*cos(d*x+c)^5*a*b^3-63*B*cos(d*x+c)^5*a^3*b
-7*B*cos(d*x+c)^5*a^2*b^2+14*B*cos(d*x+c)^5*a*b^3-19*A*cos(d*x+c)^4*a^3*b+20*A*cos(d*x+c)^4*a^2*b^2-8*A*cos(d*
x+c)^4*a*b^3-14*B*a*b^3*cos(d*x+c)^4+4*A*cos(d*x+c)^3*a*b^3-A*cos(d*x+c)^2*a^2*b^2+18*A*cos(d*x+c)*a^3*b-7*B*c
os(d*x+c)^3*a^2*b^2+28*B*cos(d*x+c)^2*a^3*b+35*B*cos(d*x+c)^4*a^3*b+14*B*cos(d*x+c)^4*a^2*b^2+26*A*cos(d*x+c)^
3*a^3*b+8*A*b^4*cos(d*x+c)^4+15*A*a^4+19*A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(
d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*cos(d*x+c)^3*sin(d*x+c)*a^2*b^2-63*B
*cos(d*x+c)^4*a^4+42*B*cos(d*x+c)^3*a^4-25*A*cos(d*x+c)^4*a^4+10*A*cos(d*x+c)^2*a^4+21*B*cos(d*x+c)*a^4-8*A*co
s(d*x+c)^5*b^4+8*A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE
((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*cos(d*x+c)^4*sin(d*x+c)*b^4-25*A*(cos(d*x+c)/(1+cos(d*x+c)))
^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/
2))*cos(d*x+c)^4*sin(d*x+c)*a^4+63*B*cos(d*x+c)^4*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*c
os(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a^4-63*B*cos(d*x+c
)^4*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF((-1
+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a^4+8*A*cos(d*x+c)^3*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2
)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*b
^4-25*A*cos(d*x+c)^3*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1
/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a^4+63*B*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(
a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*cos(d*x
+c)^3*sin(d*x+c)*a^4-63*B*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*El
lipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*cos(d*x+c)^3*sin(d*x+c)*a^4+8*A*(cos(d*x+c)/(1+cos(d*
x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b
))^(1/2))*cos(d*x+c)^3*sin(d*x+c)*a*b^3-19*A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+co
s(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*cos(d*x+c)^3*sin(d*x+c)*a^3*b-2*A*
(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))/si
n(d*x+c),(-(a-b)/(a+b))^(1/2))*cos(d*x+c)^3*sin(d*x+c)*a^2*b^2-8*A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*
(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*cos(d*x+c)^3
*sin(d*x+c)*a*b^3+63*B*cos(d*x+c)^3*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+
cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a^3*b-14*B*cos(d*x+c)^3*sin(d*x+
c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))
/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*b^2-14*B*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+
cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*cos(d*x+c)^3*sin(d*x+c)*a*b^3-49
*B*cos(d*x+c)^3*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*E
llipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a^3*b+14*B*cos(d*x+c)^3*sin(d*x+c)*(cos(d*x+c)/(1+co
s(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/
(a+b))^(1/2))*a^2*b^2+19*A*cos(d*x+c)^4*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))
/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a^3*b+19*A*cos(d*x+c)^4*sin(
d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x
+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*b^2+8*A*cos(d*x+c)^4*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1
/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b^3
-19*A*cos(d*x+c)^4*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2
)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a^3*b-2*A*cos(d*x+c)^4*sin(d*x+c)*(cos(d*x+c)/(1+
cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b
)/(a+b))^(1/2))*a^2*b^2-8*A*cos(d*x+c)^4*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c)
)/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b^3+63*B*(cos(d*x+c)/(1+c
os(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)
/(a+b))^(1/2))*cos(d*x+c)^4*sin(d*x+c)*a^3*b-14*B*cos(d*x+c)^4*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1
/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*b
^2-14*B*cos(d*x+c)^4*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1
/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b^3-49*B*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1
/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*cos(d
*x+c)^4*sin(d*x+c)*a^3*b+14*B*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2
)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*cos(d*x+c)^4*sin(d*x+c)*a^2*b^2+19*A*(cos(d*x+c)/
(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(
a-b)/(a+b))^(1/2))*cos(d*x+c)^3*sin(d*x+c)*a^3*b)*cos(d*x+c)*(1/cos(d*x+c))^(9/2)/(a+b*cos(d*x+c))^(1/2)/sin(d
*x+c)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (B \cos \left (d x + c\right ) + A\right )} \sqrt{b \cos \left (d x + c\right ) + a} \sec \left (d x + c\right )^{\frac{9}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)^(9/2)*(a+b*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c) + a)*sec(d*x + c)^(9/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (B \cos \left (d x + c\right ) + A\right )} \sqrt{b \cos \left (d x + c\right ) + a} \sec \left (d x + c\right )^{\frac{9}{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)^(9/2)*(a+b*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral((B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c) + a)*sec(d*x + c)^(9/2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)**(9/2)*(a+b*cos(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (B \cos \left (d x + c\right ) + A\right )} \sqrt{b \cos \left (d x + c\right ) + a} \sec \left (d x + c\right )^{\frac{9}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)^(9/2)*(a+b*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c) + a)*sec(d*x + c)^(9/2), x)